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Abstract

In 1996, Xie [An assessment of time integration schemes for non-linear dynamic equations, Journal of Sound and

Vibration 192(1) (1996) 321–331] presented an assessment on seven existing and commonly used time integration schemes

for nonlinear dynamic equations. In this work, the differential quadrature (DQ) time integration scheme proposed by Fung

in 2001 is assessed following the same procedures as Xie’s. It is shown that accurate numerical results can be obtained by

the DQ method when using much larger time step over the commonly used time integration schemes. Based on the results

reported herein, some conclusions are drawn.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In 2001, Fung [1,2] presented a new time integration scheme based on the differential quadrature (DQ)
method. Based on the numerical examples, Fung showed that the proposed time integration scheme is
unconditionally stable, higher-order accurate and computationally efficient for initial value problems.
Thus, the DQ time integration scheme could be a powerful candidate for use in engineering practice.
Earlier, Xie [3] performed an assessment on the seven commonly used time integration schemes, including
the method of central finite difference, the Wilson-y method, the Newmark method, the Houbolt method,
the a-method of Hilber–Hughes–Taylor, together with the fourth-order Runge–Kutta method for the purpose
of comparisons. Four simple nonlinear dynamic systems are tested. It is shown that some of the time
integration schemes are not suitable for time integration over long time duration, since the numerical results
are so inaccurate.

In this paper, the DQ time integration scheme, not included in Xie’s paper, is tested following the same
procedures as Xie’s. Comparisons are made with existing results and some conclusions are drawn based on the
results reported herein.
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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2. A brief description of DQ time integration scheme

For completeness, the DQ time integration scheme in Refs. [1,2] is briefly described. According to the DQ
method in time domain, u(t) is expressed as

uðtÞ ¼
XN

j¼0

ljðtÞuj ; t 2 ½0;Dt�, (1)

where uj ¼ uðtjÞ, (N+1) is the total number of grid points, tjðj ¼ 0; 1; 2; . . . ;NÞ are the grid point in [0,Dt] and
lj(t) is the well-known Lagrangian interpolation functions, respectively.

Using Eq. (1) and taking the first derivative with respect to time t yield

duðtÞ

dt
¼ _uðtÞ ¼

XN

j¼0

_ljðtÞuj ; t 2 ½0;Dt�, (2)

where the over dot denotes the first derivative with respect to time t. From Eq. (2) one obtains

_ui ¼ _uðtiÞ ¼
XN

j¼0

_ljðtiÞuj ¼
XN

j¼0

Gijuj ði ¼ 0; 1; :::;NÞ, (3)

where Gij is the weighting coefficient of the first derivative with respect to time t and can be computed explicitly by [4,5]

Gij ¼
o0NðtiÞ

ðti � tjÞo0NðtjÞ
ðiajÞ; Gii ¼

XN

j¼0;iaj

1

ðti � tjÞ
. (4)

In Eq. (4), o0NðtiÞ and o0N ðtjÞ are computed by

o0NðtiÞ ¼ ðti � t0Þðti � t1Þ � � � ðti � ti�1Þðti � tiþ1Þ � � � ðti � tN�1Þðti � tNÞ (5)

o0N ðtjÞ ¼ ðtj � t0Þðtj � t1Þ � � � ðtj � tj�1Þðtj � tjþ1Þ � � � ðtj � tN�1Þðtj � tN Þ. (6)

Let fugT ¼ u1 . . . uN

� �
, f _ugT ¼ _u1 . . . _uN

� �
, all equations except for the first one in Eq (3), namely,

i taking the value of 1; 2; . . . ;N, can be re-written by the following matrix form:

f _ug ¼ fG0gu0 þ ½G�fug. (7)

The second-order derivative with respect to time t can be expressed in terms of u0, v0, and {u} in a similar
way. Using Eq. (7), one has

f €ug ¼ fG0g _u0 þ ½G�f _ug ¼ fG0gv0 þ ½G�fG0gu0 þ ½G�½G�fug

¼ fG0gv0 þ fGG0gu0 þ ½GG�fug, (8)

where f €ugT ¼ €u1 . . . €uN

� �
.

For unconditionally stable, higher-order accurate and computationally efficient, Fung [2] used the abscissa
of Gaussian quadrature together with t0 ¼ 0 as the grid points, namely, tj is computed by

tj ¼ Dtð1þ xjÞ=2 ðj ¼ 1; 2; . . . ;NÞ, (9)

where xj are the abscissa of Gaussian quadrature in [�1,1]. For example, xj takes the values of �
ffiffiffiffiffiffiffi
0:6
p

; 0;
ffiffiffiffiffiffiffi
0:6
p

if N ¼ 3. It is seen that only one end point (t ¼ 0) of a time interval is assigned as a grid point, and the other
one (t ¼ Dt) of a time interval is not used as a grid point in determining the weighting coefficients, different
from the conventional DQ method.

For a given second-order initial value problem, u0 and v0 ¼ _u0 are known. Solving the resultant algebraic
equations yields the vector {u}. At t ¼ Dt, uDt and vDt ¼ _uDt can be computed by [2]

uDt ¼ uðt ¼ DtÞ ¼
XN

j¼0

ljðt ¼ DtÞuj ; vDt ¼
duðt ¼ DtÞ

dt
¼
XN

j¼0

ljðt ¼ DtÞ _uj, (10)

where f _ug is obtained by Eq. (7).
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In the DQ time integration scheme, uDt and vDt are the given initial conditions (u0 and v0) for the next time
step. More details may be found in Refs. [1,2].

3. Numerical examples and discussion

The four examples considered in Ref. [3] are analyzed by using the DQ time integration scheme. Results are
compared with other time integration schemes presented in Ref. [3]. To save the space, only a part of results in
Ref. [3] are included for comparisons.

Example 1. Consider a hardening elastic spring. The nonlinear dynamic equation is

€uþ S1uð1þ S2u
2Þ ¼ 0, (11)

where S140;S240. The exact total energy is

E ¼ 1
4
ð2 _u2 þ 2S1u

2 þ S1S2u4Þ. (12)

To assess the time integration scheme, the percent error in terms of the energy is introduced [3],

Er ¼ jðE � E0Þ=E0j � 100%, (13)

where E0 is the total energy at t ¼ 0.
For numerical results present herein, S1 ¼ 100, S2 ¼ 10. The initial conditions are u0 ¼ 1.5 and v0 ¼ 0.0.

Table 1 lists the maximum percentage errors of the total energy over the time duration of 100T. Except for
the DQ results, all other data are directly cited from Ref. [3] for comparisons. In the table, the average
acceleration method is equivalent to the Newmark method with b ¼ 0.25, g ¼ 0.5, the method of central
difference is equivalent to the Newmark method with b ¼ 0.0, g ¼ 0.5, and Newmark(*) represents the
Newmark method with b ¼ 0.3025, g ¼ 0.0. The DQ results are obtained by the DQ method with N ¼ 3 and
direct iteration, instead of the Newton–Raphson method, is used in solving the nonlinear algebraic equations.
During the iteration, the iteration stops if error peps ¼ 10�10, and then go to the next time step. The error is

defined by error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k¼1ðu

iþ1
k � ui

kÞ
2

q
for the DQ method, here i is the iteration number. It is seen from

Table 1 that the DQ method is the best integration scheme among all methods listed in the table. Accurate
results can be obtained with much larger time increment.

The phase portraits of the exact solution and the DQ solution with Dt ¼ T/20 are given in Fig. 1a and b. It is
seen that good agreement is obtained. According to Xie [3], only the average acceleration method and the
method of central difference can give reasonable good results with the same time increment. Some of the
results by the remaining investigated methods have deviated far from the exact solutions. This can also be seen
from the maximum percentage errors of the total energy listed in Table 1. For Dt ¼ T/1000 and the time
duration of 100T, the CPU time on the authors’ Personal Computer by the DQ method and the average
acceleration method together with the direct iteration method is approximately 0.063 and 0.032 s, respectively.
It is noted that the re-calculated CPU time of the average acceleration method (0.032 s) is much less than the
one (1.48 s) given by Xie [3]. The main reason to cause the difference is perhaps due to the different speeds of
Table 1

Maximum percentage errors of the total energy over the time duration of 100T ð €uþ 100uð1þ 10u2Þ ¼ 0; u0 ¼ 1:5; v0 ¼ 0:0; T ¼ 0:15Þ

Dt T/10 T/15 T/20 T/25 T/50 T/100 T/200 T/1000

DQ method 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Average accl. [3] – 7.1 4.1 2.6 0.7 0.2 0.0 0.0

Central diff. [3] – 7.7 4.3 2.7 0.7 0.2 0.0 0.0

Newmark(*) [3] – 99.8 99.6 99.3 97.7 93.1 82.9 39.5

Wilson-y [3] – 93.6 87.6 79.6 36.1 7.1 1.0 0.0

Houbolt [3] – 98.8 97.3 95.3 75.3 30.0 5.4 0.1

a-Method [3] – 67.8 49.2 34.3 6.7 0.9 0.1 0.0

Runge–Kutta [3] – 44.5 18.4 7.3 0.3 0.0 0.0 0.0
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Fig. 1. Phase portraits of the hardening spring: €uþ 100uð1þ 10u2Þ ¼ 0; u0 ¼ 1:5; v0 ¼ 0:0. (a) Exact solution; (b) data by the DQ time

integration scheme (N ¼ 3).
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the authors’ modern PCs and Xie’s antique machines of the last century, since the method to solve the
nonlinear equations will not affect the CPU time very much for this problem. If Newton–Raphson method is
used, the re-calculated CPU time of the average acceleration method is approximately 0.041 s. It is also
experienced that the skill of the programming may also affect the CPU time since it is so small for the problem
considered. The total number of iteration by the DQ method and the average acceleration method is 335,009
and 376,682, respectively. Thus, the average number of iterations per time increment by the DQ method and
the average acceleration method is approximately the same. It is seen that the CPU time of the DQ method is
twice of that of the average acceleration method. However, the maximum percentage errors of the total energy
by the DQ method (0.38� 10�6) is much smaller than that (0.25� 10�2) by the average acceleration method. It
is obvious that much more accurate results are obtained by the DQ time integration scheme with the same time
increment. If the time increment increases 25 times more, i.e., Dt ¼ T/40, the CPU time and the maximum
percentage errors of the total energy by the DQ method are 0.016 s and 0.84� 10�6. It is seen that the DQ
method can still yield much more accurate results with less CPU time as compared with the average
acceleration method. Thus, the advantage of the DQ method is demonstrated.

Example 2. Consider a softening elastic spring. The nonlinear dynamic equation is

€uþ S tanhðuÞ ¼ 0, (14)

where S40. The exact total energy is

E ¼ 1
2
_u2 þ S ln½coshðuÞ�. (15)

For numerical data presented herein, S ¼ 100 and the initial conditions are u0 ¼ 4.0, v0 ¼ 0.0.

Table 2 lists the maximum percentage errors of the total energy over the time duration of 100T. Except for
the DQ results, all other data are directly cited from Ref. [3] for comparisons. Similar trends to Example 1 are
observed. It is seen again that the DQ method yields the smallest of the maximum percentage errors of the
total energy. However, the time increment to reach the zero maximum percentage errors of the total energy by
the DQ method increases to Dt ¼ T/25. The phase portraits of the exact solution and the DQ solution with
Dt ¼ T/20 are given in Fig. 2. It is seen that good agreement is obtained. According to Xie [3], the average
acceleration method, the method of central difference, and the fourth-order Runge–Kutta method can give
reasonable good results with the same time increment for this problem. Some of the results by the remaining
methods in Table 2 have deviated far from the exact solutions. This can also be seen from the maximum
percentage errors of the total energy listed in Table 2.

For Dt ¼ T/1000 and the time duration of 100T, the CPU time on a Personal Computer by the DQ method
and the average acceleration method is approximately 0.203 and 0.125 s. The maximum percentage errors of
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Table 2

Maximum percentage errors of the total energy over the time duration of 100T ð €uþ 100 tanhðuÞ ¼ 0; u0 ¼ 4:0; v0 ¼ 0:0; T ¼ 1:14Þ

Dt T/10 T/15 T/20 T/25 T/50 T/100 T/200 T/1000

DQ method 0.8 0.2 0.8 0.0 0.0 0.0 0.0 0.0

Average accl. [3] – 8.8 4.7 3.0 0.7 0.2 0.1 0.0

Central diff. [3] – 14.0 7.3 3.9 0.9 0.0 0.1 0.0

Newmark(*) [3] – 100.0 100.0 100.0 100.0 100.0 98.1 32.4

Wilson-y [3] – 100.0 100.0 100.0 36.0 505 0.8 0.0

Houbolt [3] – 100.0 100.0 100.0 99.9 27.7 4.1 0.1

a-Method [3] – 97.3 59.8 33.7 5.6 0.9 0.2 0.0

Runge–Kutta [3] – 60.8 1.0 8.3 0.3 0.0 0.0 0.0
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Fig. 2. Phase portraits of the softening spring: €uþ 100 tanhðuÞ ¼ 0; u0 ¼ 4:0; v0 ¼ 0:0. (a) Exact solution; (b) data by the DQ time

integration scheme (N ¼ 3).
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the total energy by the DQ method and the average acceleration method is 0.78� 10�7 and 0.23� 10�2,
respectively. Again much more accurate results are obtained by the DQ method. It is noted that the re-
calculated CPU time for the average acceleration method (0.125 s) is much less than the one (3.72 s) given by
Xie [3]. The main reason to cause the difference is also due to the different speeds of the authors’ modern PCs
and Xie’s antique machines of the last century. The total number of iterations by the DQ method and the
average acceleration method is 314,995 and 293,574, respectively. Thus, the average number of iterations per
time increment by the DQ method and the average acceleration method is approximately the same. If the time
increment increases 25 times more, i.e., Dt ¼ T/40, the CPU time and the maximum percentage errors of the
total energy by the DQ method are 0.031 s and 0.28� 10�3. Again the DQ method can yield more accurate
results with less CPU time as compared with the average acceleration method if much larger time increment
is used.

From Table 2, it is also observed that the percentage error in energy by the DQ method is 0.2% at Dt ¼

T/15, but increases to 0.8% at a smaller time step (Dt ¼ T/20). This phenomenon is similar to the
Runge–Kutta method observed in Ref. [3]. Xie and Steven [6] found that a smaller time step with the average
acceleration method may even change a stable solution to an unstable one. This will be further demonstrated
by the following two examples.

Example 3. Consider a softening elastic spring. The nonlinear dynamic equation is given by Eq. (14) and
S ¼ 100. The initial conditions change to u0 ¼ 10.0, v0 ¼ 0.0.

This example was used to test the validity of the unconditional stability when the integration schemes
applied to nonlinear systems. Fig. 3a–c show the results by the a-method (Fig. 3a), the DQ method with N ¼ 3
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Fig. 3. Phase portraits of the softening spring: €uþ 100 tanhðuÞ ¼ 0; u0 ¼ 10:0; v0 ¼ 0:0. (a) Results by the a-method; (b) data by the DQ

time integration scheme (N ¼ 3); and (c) data by the DQ time integration scheme (N ¼ 5).
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(Fig. 3b) and N ¼ 5 (Fig. 3c). Dt ¼ T/8 ¼ 1.8/8. It is seen that the a-method, an unconditional stable time
integration method in linear systems, yields unstable solutions for this case (Fig. 3a). Thus, care should be
taken for choosing the time step when applying the unconditionally stable time integration schemes for
nonlinear systems. The DQ method is much better than the a-method, since stable results although with some
numerical damping (Fig. 3b) are obtained. The DQ method with more grid points (at the expense of increasing
CPU time) in one time step can increase the accuracy (Fig. 3c).

Example 4. Consider an elastic spring. The nonlinear dynamic equation is given by Eq. (11) and S1 ¼ �0.5,
S2 ¼ �1. The initial conditions are u0 ¼ 0.5, v0 ¼ 0.0.

Besides the possible instability mentioned in Example 3, other problems may arise from the numerical time
integration if a large time step is used. Xie [3] demonstrated by this example that the numerical damping in the
investigated schemes was so high that the results bear no resemblance to the exact solution. Figs. 4a–c show
the phase portraits of the exact solution, solutions by the average acceleration method (the best one among the
six time integration schemes investigated by Xie [3]) and the DQ method (N ¼ 3) with DtET/3 ¼ 25. It is
experienced by the authors that the iteration process diverged for the Newmark method with b ¼ 0.0, g ¼ 0.5,
and Newmark method with b ¼ 0.3025, g ¼ 0.0. It is seen that although the results by the DQ method (N ¼ 3)
are not quite accurate, but are still much better than all other methods since most results in Ref. [3] bear no
resemblance to the exact solution at all. It is also found that results obtained by the average acceleration
method are also sensitive to the method used in solving the nonlinear equations.
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Fig. 4. Phase portraits of the softening spring: €u� 0:5uð1� u2Þ ¼ 0; u0 ¼ 0:5; v0 ¼ 0:0. (a) Exact solution; (b) average acceleration method;

and (c) data by the DQ time integration scheme (N ¼ 3).
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4. Conclusions

Based on the numerical results reported herein, one may conclude that overall speaking the DQ time
integration scheme is reliable, computationally more efficient and also suitable for time integrations over long
time duration. But care should be taken in choosing a time step when applying the DQ method to nonlinear
systems. Similar to all conventional unconditionally stable time integration schemes, the unconditionally
stable DQ time integration scheme may also be possible to yield inaccurate results for nonlinear systems with
an inappropriate too large time step.
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